- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Doong, Ruey-An (1)
-
Fu, Han (1)
-
Lai, YenJung Sean (1)
-
Rittmann, Bruce E (1)
-
Tsai, Cheng-Kuo (1)
-
Wang, Tzu-Heng (1)
-
Westerhoff, Paul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carbon dioxide (CO2) can be converted into valuable organic chemicals using light irradiation and photocatalysis. Today, light-energy loss, poor conversion efficiency, and low quantum efficiency (QE) hamper application of photocatalytic CO2 reduction. To overcome these drawbacks, we developed an efficient photocatalytic reactor platform for producing formic acid (HCOOH) by coating iron-based metal-organic framework (Fe-MOF) onto side-emitting polymeric optical fiber (POFs) and using hollow-fiber membranes (HFMs) to deliver bubble-free CO2. The photocatalyst, Fe-MoF with amine-group (−NH2) decoration, provided exceptional dissolved inorganic carbon (DIC) absorption. The dual-fiber system gave a CO2-to-HCOOH conversion rate of 116 ± 1.2 mM h-1 g-1, which is ≥18-fold higher than rates in photocatalytic slurry systems. The 12% QE obtained using the POF was 18-fold greater than the QE obtained by a photocatalytic slurry. The conversion efficiency and product selectivity of CO2-to-HCOOH were up to 22% and 99%, respectively. Due to the dual efficiencies of bubble-free CO2 delivery and the high QE achieved using the POF platform, the dual-fiber system had energy consumption of only 0.60 ± 0.05 kWh mole-1, 3000-fold better than photocatalysis using slurry-based systems. This innovative dual-fiber design enables efficient CO2 valorization without use of platinum group metals or rare earth elements.more » « less
An official website of the United States government
